BACCALAURÉAT BLANC

Spécialité Mathématiques (sujet 2)

Mardi 27 février 2024

Corrigé

Exercice 1

1. $M(x,y,z) \in \mathcal{D}$ si, et seulement si, il existe $t \in \mathbf{R}$ tel que $\overrightarrow{\mathrm{AM}} = t\overrightarrow{u}$ ce qui donne la représentation paramétrique de \mathcal{D} :

$$\begin{cases} x = -2 + t \\ y = 8 + 5t \quad (t \in \mathbf{R}). \\ z = 4 - t \end{cases}$$

- **2.** (a) Les plans \mathscr{P} et \mathscr{Q} ont respectivement pour vecteur normal $\vec{n} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ et $\vec{n}' \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ qui ne sont manifestement pas colinéaires. Ces deux plans n'étant pas parallèles sont sécants.
 - (b) On vérifie que la droite \mathscr{D}' est l'intersection des deux plans. Celle-ci a pour vecteur directeur $\vec{u}' \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. On vérifie d'abord que \vec{u}' est orthogonal au vecteur normal de chaque plan :

$$\vec{u}' \cdot \vec{n} = 2 \times 1 + 1 \times (-1) + 1 \times (-1) = 0,$$

 $\vec{u}' \cdot \vec{n}' = 2 \times 1 + 1 \times 0 + 1 \times (-2) = 0,$

ce qui prouve que \mathscr{D}' est parallèle aux plans \mathscr{P} et \mathscr{Q} . Pour voir qu'elle est incluse, on prend le point A'(11,4,0) de \mathscr{D}' et on vérifie qu'il appartient à chaque plan :

$$x_{A'} - y_{A'} - z_{A'} = 11 - 4 - 0 = 7$$
 donc $A' \in \mathcal{P}$,
 $x_{A'} - 2z_{A'} = 11 - 2 \times 0 = 11$ donc $A' \in \mathcal{Q}$.

3. Les vecteurs directeurs $\vec{u} \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}$ de \mathscr{D} et $\vec{u}' \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ de \mathscr{D}' ne sont pas colinéaires donc les droites \mathscr{D} et \mathscr{D}' sont sécantes ou non coplanaires. On cherche leur intersection :

$$\begin{cases} -2+t = 11 + 2s \\ 8+5t = 4+s \\ 4-t = s \end{cases} \iff \begin{cases} 2s = -13+t \\ s = 4+5t \\ s = 4-t \end{cases} \iff \begin{cases} t = 0 \\ s = -\frac{13}{2} \\ s = 4 \end{cases}.$$

Ce système n'a pas de solution donc les droites \mathcal{D} et \mathcal{D}' ne sont pas coplanaires.

4. (a) $H(-3,3,5) \in \mathcal{D}$ si, et seulement si, il existe $t \in \mathbf{R}$ tel que

$$\begin{cases}
-3 = -2 + t \\
3 = 8 + 5t \\
5 = 4 - t
\end{cases}$$

Ce système a une solution évidente t = -1, donc $H \in \mathcal{D}$.

- (b) On a $\overrightarrow{HH'}\begin{pmatrix} 6\\ -3\\ -9 \end{pmatrix}$. $\overrightarrow{HH'} \cdot \overrightarrow{u} = 6 \times 1 - 3 \times 5 - 9 \times (-1) = 0$, donc (HH') et \mathscr{D} sont perpendiculaires.
- (c) On calcule:

$$HH'^{2} = (3+3)^{2} + (-3)^{2} + (-4-5)^{2} = 36 + 9 + 81 = 126$$

donc
$$HH' = \sqrt{126} = \sqrt{9 \times 14} = 3\sqrt{14}.$$

Remarque. La droite (HH') étant la perpendiculaire commune aux droites \mathcal{D} et \mathcal{D}' , la distance HH' est la plus courte distance entre les droites \mathcal{D} et \mathcal{D}' .

5. Soit un point M(x, y, z); alors $\overrightarrow{MH'}\begin{pmatrix} 3-x \\ 0-y \\ -4-z \end{pmatrix}$ et donc

$$\overrightarrow{\text{MH}'} \cdot \overrightarrow{\text{HH}'} = 126$$

$$\iff (3-x)\times 6 + (0-y)\times (-3) + (-4-z)\times (-9) = 126$$

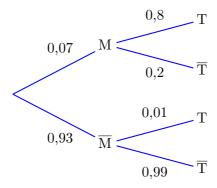
$$\iff 2(3-x) + y + 3(4+z) = 42 \quad \text{(en divisant par 3)}$$

$$\iff -2x + y + 3z = 24,$$

qui est l'équation d'un plan. Le vecteur $\vec{n} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$ est normal au plan donc aussi $\overrightarrow{HH'} \begin{pmatrix} 6 \\ -3 \\ -9 \end{pmatrix}$. Or, d'après la question 4c, $\overrightarrow{HH'} \cdot \overrightarrow{HH'} = HH'^2 = 126$ donc H appartient au plan. Ce plan est donc le plan passant par H et perpendiculaire à (HH').

Exercice 2

1. On modélise la situation par un arbre pondéré.



On a donc $P(M \cap T) = 0.07 \times 0.8 = 0.056$.

2. Les événements M et \overline{M} formant une partition de l'univers, on a, d'après la formule probabilités totales,

$$P(T) = P(M \cap T) + P(\overline{M} \cap T) = 0.07 \times 0.8 + 0.93 \times 0.01 = 0.0653.$$

- 3. $P_M(T)$ est la probabilité d'avoir un test positif sachant qu'on est malade, et $P_T(M)$ est la probabilité d'être malade sachant que le test est positif.
 - Dans un contexte de dépistage de la maladie, il est plus pertinent de calculer la probabilité d'être malade sachant que le test est positif c'est-à-dire $P_T(M)$.
- 4. On considère dans cette question que la personne choisie au hasard a eu un test positif. La probabilité qu'elle soit malade est

$$P_{T}(M) = \frac{P(M \cap T)}{P(T)} = \frac{0.07 \times 0.8}{0.0653} \approx 0.86.$$

- 5. (a) L'expérience aléatoire peut être assimilée à la répétition de n=10 tirages avec remise, donc indépendants qui constituent une épreuve de Bernoulli où le succès est défini par le test positif, de probabilité p=0.0653. La variable aléatoire X compte le nombre de succès donc elle suit une loi binomiale de paramètre n=10 et p=0.0653.
 - (b) La probabilité pour qu'exactement deux personnes aient un test positif est

$$P(X = 2) = {10 \choose 2} \times 0.0653^{2} \times (1 - 0.0653)^{8} \approx 0.11.$$

6. On veut déterminer le nombre minimum de personnes à tester dans ce pays pour que la probabilité qu'au moins l'une d'entre elles ait un test positif, soit supérieure à 99%.

Soit n le nombre de personnes testées. On cherche n pour que $P(X\geqslant 1)\geqslant 0,99.$ On a $P(X\geqslant 1)=1-P(X=0)$ soit

Il faut donc tester 69 personnes dans ce pays pour que au moins une ait un test positif.

Exercice 3

Partie A: Logarithme

- **1.** La fonction u est définie sur $]0, +\infty[$ par $u(x) = 1 x + \ln(2x)$.
 - (a) La fonction u est dérivable sur $]0,+\infty[$ et sa dérivée u' est telle que

$$u'(x) = -1 + \frac{2}{2x} = -1 + \frac{1}{x} = \frac{1-x}{x}.$$

- (b) On calcule les limites en 0 et en $+\infty$:
 - $\lim_{x\to 0} \ln x = -\infty$, donc $\lim_{x\to 0} u(x) = -\infty$;

•
$$u(x) = x\left(\frac{1}{x} - 1 + 2\frac{\ln(2x)}{2x}\right)$$
, or $\lim_{X \to +\infty} \frac{\ln X}{X} = 0$ donc $\lim_{x \to +\infty} u(x) = -\infty$.

(c) Comme x > 0 sur $]0, +\infty[$, le signe de u'(x) est celui de 1-x. Le maximum de u est donc $u(1) = 1 - 1 + \ln 2 = \ln 2 > 0$, d'où le tableau de variation.

x	0		1		$+\infty$
u'(x)		+	0	_	
u(x)		-∞	$\int \ln 2$	B	$-\infty$

- Sur]0,1], u est continue, strictement croissante et $\lim_{x\to 0} u(x) < 0 < u(1)$, donc, d'après le théorème des valeurs intermédiaires, l'équation u(x) = 0 possède une unique solution sur cet intervalle.
- De même sur $[1, +\infty[$, u continue, strictement décroissante et $u(1) > 0 > \lim_{x \to +\infty} u(x)$ donc u(x) = 0 possède une unique solution sur cet intervalle.

Donc au total, l'équation u(x) = 0 possède deux solutions.

2. La suite (u_n) est définie pour tout entier naturel n non nul par

$$u_n = 1 - \ln\left(\frac{n+1}{n}\right).$$

On a, pour tout entier naturel n non nul,

$$u_{n+1} - u_n = \cancel{1} - \ln\left(\frac{n+2}{n+1}\right) - \cancel{1} + \ln\left(\frac{n+1}{n}\right) = \ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{n+1}{n+2}\right)$$
$$= \ln\left(\frac{(n+1)^2}{n(n+2)}\right) = \ln\left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right).$$

Or $n^2 + 2n + 1 > n^2 + 2n > 0$ donc la fraction est supérieure à 1 et donc son logarithme népérien est strictement positif. Ainsi la suite est croissante.

Remarque. On pouvait aussi voir que la dérivée de la fonction $f: x \mapsto 1 - \ln\left(\frac{x+1}{x}\right)$ sur $]0, +\infty[$ est telle que

$$f'(x) = -\frac{\frac{1 \times x - (x+1) \times 1}{x^2}}{\frac{x+1}{x}} = -\frac{1}{x^2} \times \frac{x}{x+1} = \frac{1}{x(x+1)} > 0.$$

3. La fonction f est définie sur $[0, +\infty[$ par

$$f(x) = \ln(1+x) - x + \frac{x^2}{2}.$$

(a) Pour tout $x de [0, +\infty[$, on a

$$f'(x) = \frac{1}{1+x} - 1 + x = \frac{1}{1+x} + \frac{(x-1)(x+1)}{x+1} = \frac{1+x^2-1}{1+x} = \frac{x^2}{1+x}.$$

(b) Pour tout $x \in [0, +\infty[$, $f'(x) \ge 0$ et ne s'annule qu'en 0, donc la fonction f est strictement croissante sur \mathbf{R}^+ et comme $f(0) = \ln 1 - 0 = 0$, on en déduit que, pour tout x de $[0, +\infty[$, $f(x) \ge 0$.

Partie B : Algorithme de dichotomie

1. On complète le script Python (lignes 5 et 7).

2. Le tableau complété.

	Valeur de m	Valeur de $f(m)$	Valeur de a	Valeur de b	b-a
Valeurs init			0	1	1
étape 1	0,5	-0,375	0,5	1	0,5
étape 2	0,75	0,171875	0,5	0,75	0,25

3. Soit α la solution de l'équation $x^3 + x - 1$. À la calculatrice on obtient $\alpha \approx 0.68$ à 10^{-2} près.

Exercice 4

Partie A : Conjectures

1. la formule qu'il faut saisir dans la cellule B3 pour obtenir les termes de la suite (u_n) :

$$=2*B2-A2+3$$

- 2. D'après les résultats du tableur, on conjecture que
 - la limite de (u_n) semble être $+\infty$,
 - la limite de $\left(\frac{u_n}{v_n}\right)$ semble être 3.

Partie B : Étude de la suite (u_n)

- 1. On montre par récurrence que, pour tout entier naturel n, on a $u_n = 3 \times 2^n + n 2$.
 - Initialisation. $u_0 = 1$ et $3 \times 2^0 + 0 2 = 1$ donc l'égalité est vérifiée au rang 0.
 - Hérédité. Supposons que, pour un entier $n \in \mathbb{N}$ particulier, on ait $u_n = 3 \times 2^n + n 2$. D'après la définition,

$$u_{n+1} = 2u_n - n + 3$$

$$= 2(3 \times 2^n + n - 2) - n + 3$$

$$= 3 \times 2^{n+1} + 2n - 4 - n + 3$$

$$= 3 \times 2^{n+1} + n - 1$$

$$= 3 \times 2^{n+1} + (n+1) - 2.$$

La relation est vraie au rang n+1.

- Conclusion. La relation est vraie au rang 0, et elle est héréditaire. Donc, d'après le principe de la récurrence, on peut affirmer que, pour tout naturel n, $u_n = 3 \times 2^n + n 2$.
- **2.** On détermine la limite de la suite (u_n) : $\lim_{n\to+\infty} 2^n = +\infty$ car 2>1, donc par somme,

$$\lim_{n \to +\infty} u_n = +\infty.$$

3. À la calculatrice, on détermine le rang du premier terme de la suite supérieur à 1 million : $u_{18}=786~448<1~000~000$ et $u_{19}=1~572~881>1~000~000$. Donc 19 est le rang du premier terme supérieur à un million.

Partie C : Étude de la suite $\left(rac{u_n}{v_n} ight)$

1. On montre que la suite $\left(\frac{u_n}{v_n}\right)$ est décroissante à partir du rang 3 :

$$\frac{u_{n+1}}{v_{n+1}} - \frac{u_n}{v_n} = \frac{2u_n - n + 3}{2^{n+1}} - \frac{u_n}{2^n} = \frac{2u_n - n + 3}{2^{n+1}} - \frac{2u_n}{2^{n+1}} = \frac{-n + 3}{2^{n+1}}$$

qui est du signe de -n+3, donc négatif ou nul si $n \ge 3$.

Ceci prouve que la suite $\left(\frac{u_n}{v_n}\right)$ est décroissante à partir du rang 3.

2. On admet que, pour tout entier n supérieur ou égal à 4, $0 < \frac{n}{2^n} \leqslant \frac{1}{n}$. Or pour tout $n \in \mathbb{N}$,

$$\frac{u_n}{v_n} = 3 + \frac{n-2}{2^n} = 3 + \frac{n}{2^n} - \frac{1}{2^{n-1}}.$$

Avec l'encadrement donné, on en déduit que, pour $n \geqslant 4$

$$3 - \frac{1}{2^{n-1}} < \frac{u_n}{v_n} \le 3 + \frac{1}{n} - \frac{1}{2^{n-1}}.$$

Or $\lim_{n\to+\infty}\frac{1}{n}=0$ et $\lim_{n\to+\infty}\frac{1}{2^{n-1}}=0$ (car 2>1), alors, d'après le théorème des gendarmes,

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 3.$$